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ABSTRACT 

We compile a number of postulates to be satisfied by a function that mathematically assesses sustainability of 
some type: national, urban, energy, etc. These postulates lay the mathematical foundations of a sustainability 
theory and lead to a simple model based on shifted geometric means combining basic sustainability indicators 
into an overall index. The model has a number of desirable properties and generalizes the weighted arithmetic 
and weighted geometric means, which are commonly used aggregation functions in sustainability 
assessments. Numerical results demonstrate the closeness of the model to other established techniques of 
sustainability. 
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1. INTRODUCTION

Sustainability assessments of an entity, be it a nation, a city, an energy or a transportation system etc., rely 
on data to evaluate human welfare and environmental integrity. Each of these two fundamental components 
is a combination of more specialized indicators organized into various hierarchical levels. For example, the 
human dimension of sustainability encompasses socio-economic, technological and political aspects which are 
further elaborated using different groups of indicators. Most assessment models normalize indicators from 
their physical domains into a common interval representing a range from the lowest to the highest levels of 
sustainability. Normalized indicators of the same group are then combined into more composite indicators 
through aggregation functions which capture the relationships among and the relative importance of 
indicators belonging to the same dimension. Composite indicators are further aggregated by exploiting the 
hierarchy from bottom to top to eventually arrive at a single numerical value of overall sustainability. 

Existing approaches to measure sustainability differ in scope, suite of indicators, and normalization and 
aggregation procedures. We review some commonly used definitions and assessment frameworks of national 
sustainability and sustainable development. 

The Human Development Index (HDI) uses four indicators: life expectancy at birth, expected years of 
schooling for children, mean years of schooling for adults aged 25 years and older, and the logarithm of gross 
national income per capita. The indicators are first transformed into a scale from 0 to 1 by a linear interpolation 
between thresholds of unsustainable and sustainable values and then combined into an overall index using 
arithmetic and geometric means.  HDI was first released in 1990 and is updated annually by the United 
Nations Development Programme (2022). 

The Environmental Performance Index (EPI) measures the closeness of a country's performance to 
established environmental policy targets. Its latest version (Wolf et al., 2022) uses 40 indicators relevant to 
three policy objectives: climate change, environmental integrity, and ecosystem vitality.  The indicators are 
first converted to dimensionless numbers from 0 to 100 and then successively aggregated using weighted 
arithmetic means into more composite indicators and the overall index. Missing data are imputed either via 
predictive models involving past or correlated variables or by averaging data of neighboring countries. For 
some indicators the imputed values include a penalty for failing to report information. EPI is successor to the 
Environmental Sustainability Index (ESI), which contained additional indicators to assess social and political 
aspects of sustainability (Esty et al., 2005). 

Sustainability Assessment by Fuzzy Evaluation (SAFE) is a hierarchical fuzzy system whose first version 
appeared in 2001. Its most recent release (Grigoroudis et al., 2021) uses 69 time series of indicators grouped in 
various components of ecological and human sustainability. The Pressure-State-Response classification of 
OECD (1991) is used to describe each component. Pressure indicators assess the negative impacts on the 
corresponding component, state describes the prevailing conditions, and response indicators reflect the 
actions taken to improve the state. Each indicator time series is transformed into a single value which captures 
the latest trends, it is then normalized in [0, 1], and finally it is combined with other normalized indicators 
through a sequential fuzzy reasoning process to obtain the SAFE index. 

A model of national environmental sustainability proposed by Liu (2007) uses the indicators of ESI. The 
Analytic Hierarchy Process (Saaty, 1980) is used to assign weights to and aggregate well-defined indicators 
such as water quality, while a fuzzy reasoning scheme similar to SAFE is used to aggregate composite 
indicators using subjective criteria and qualitative information. 

The Sustainable Society Index (SSI) introduced by van de Kerk and Manuel (2008) is a combination of 
separate indices corresponding to three dimensions: Human, Environmental and Economic Wellbeing. Each 
dimension is assessed using five to nine indicators which are normalized and aggregated using geometric 
means. All variables are assigned a numerical value from 1 (weakest sustainability) to 10 (strongest 
sustainability). SSI is updated every second year since 2006. 

All the above models provide country rankings. About one hundred other models of sustainability, 
sustainable development, and human well-being have been surveyed by Yang (2014). Recent comprehensive 
reviews on weighting and aggregation methods for constructing composite indicators can be found in Gan et 
al. (2017) and Greco et al. (2019). 

The simplest aggregation functions are the arithmetic and geometric means and their weighted 
counterparts, also known as additive and multiplicative functions. These are the most commonly used models 
for sustainability assessments. However they have certain drawbacks that limit their applicability. For 
example, an additive function cannot be used to describe an indicator that is critically important for the 
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sustainability of the whole entity since a decline of such an indicator below a certain unsustainability level 
can, by the additive property, be compensated for by an increase in sustainability levels of other indicators. 
Multiplicative functions have the opposite property, i.e., they treat all indicators as being critically important. 
Fuzzy logic and other universal function approximation tools overcome these limitations, sometimes at the 
price of increased computational complexity and need for sophisticated parameter tuning. 

In the present paper we propose an extension to the geometric mean which avoids the drawbacks of the 
previous models. The new function satisfies a number of sustainability postulates and provides sustainability 
assessments and country rankings which have strongly positive correlations with some of the models 
reviewed above and variants thereof. 

2. AGGREGATION OF SUSTAINABILITY INDICATORS

2.1. Symmetry and homogeneity 

We start with n indicators relevant to an entity whose sustainability is assessed. We assume that these 
indicators are normalized into dimensionless numbers xi on [0, 1], i = 1, …, n, where 0 corresponds to a range 
of indicator values deemed totally unsustainable and 1 corresponds to absolutely sustainable ones. The 
objective is to aggregate these indicators into an overall measure of sustainability S(x1, …, xn) whose range is 
[0, 1] as well. 

It is reasonable to require that S satisfy the following postulates: 
(P.1) S is a continuous and increasing function. 

    (P.2a) S is internal, i.e., min xi  S(x1, …, xn)  max xi, (x1, …, xn)  [0, 1]n. 
Continuity is assumed for analytical simplicity. Monotonicity ensures that S does not decrease whenever an 
indicator is improved. "Internness" is a measuring convention that assigns to each combination of (x1, …, xn) 
an intermediate aggregate value. It has been shown (Beliakov et al., 2007) that (P.1) and (P.2a) together are 
equivalent to (P.1) and (P.2) below 

(P.2) S is idempotent, i.e., S(x, …, x) = x, x  [0, 1]. 
Several functions S satisfy (P.1) and (P.2). The arithmetic mean 

AM = (x1+…+xn)/n, 
the geometric mean, 

GM = (x1…xn)1/n, 
and the harmonic mean, 

ΗM = n/(x1
–1+…+xn

–1), 
are examples of such aggregation functions, with AM and GM commonly used in sustainability assessments. 

Idempotence implies that 
S(1, …, 1) = 1 (1) 
S(0, …, 0) = 0 (2) 

two fundamental properties of any sustainability function. These two conditions along with monotonicity 
reminisce of the joint distribution function of n random variables defined on the unit interval [0, 1]. However, 
distributions in general do not satisfy (P.2). 

In 1930 Kolmogorov defined regular means as functions which satisfy (P.1), (P.2), and two additional 
conditions: 

(P.3) S is a symmetric function, i.e., . S(…, xi, …, xj, …) = S(…, xj, …, xi, …)  i, j. 
(P.4) S is decomposable in the sense that if S(x1, …, xn) = y then  S(x1, …, xn, xn+1, …, xn+m) = S(y, …, y, xn+1, …, 
xn+m), for all natural numbers n and m. 

According to (P.4), any subset of values x1, …, xn can be replaced by their aggregate value without affecting 
the overall aggregate value. Symmetry is necessary for the validity of the next result which will be later 
relaxed. 

Theorem 1 (Kolmogorov, 1930). If (P.1)–(P.4) hold then S is a quasi-arithmetic mean of x1, …, xn, i.e., 
it has the form 

1 1
1

( ) ( )
( , ,x ) n

n

x x
S x

n

 
− + + 

=  
 

where  and its inverse, –1, are continuous and strictly increasing univariate functions having the same range. 
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A similar theorem was proved by Nagumo (1930), who also examined regular means that are homogeneous 
of degree 1, i.e., 

(P.5) S(tx1, …, txn) = t S(x1, …, xn)  xi [0, 1] and t: txi  [0, 1]. 

Theorem 2 (Nagumo, 1930). If (P.1)–(P.5) hold, then S is a quasi-arithmetic mean generated by (x) 

= xp for p(–, ) or, equivalently, the power mean (also known as the Hölder mean) 
1/

1
1( , , x ) PM

pp p

n
n p

x x
S x

n

 + +
= =  

 
. 

Note that PM1 = AM, PM–1 = HM, limp→– PMp = min xi, limp→ PMp = max xi, and, by L' Hôpital's rule on 
ln(PMp), PM0 = GM. 

2.2. The shifted geometric mean 

In this section we extend the power and geometric means to relax the symmetry and homogeneity 
assumptions. The expression we adopt in equation (5) below is a novel analytical model for the assessment of 
sustainability. It satisfies postulates P.1-P.4 and, by consequence, properties (1) and (2), and generalizes the 
arithmetic and geometric mean approaches providing them with a solid theoretical rationale. 

If indicator 1 is deemed twice as important as the others, then this is equivalent to having two indicators with 
the same value x1. The quasi-arithmetic mean is 

1 1
1

2 ( ) ( )
( , ,x )

1
n

n

x x
S x

n

 
− + + 

=  
+ 

. 

This approach can be extended to any combination of integer weights mi  1; thus 

1 1 1
1

1

( ) ( )
( , ,x ) n n

n

n

m x m x
S x

m m

 
−  + +

=  
+ + 

. 

If we define the rational weights wi = mi/(m1+…+mn), the above is written as 

S(x1, …, xn)  =–1[w1(x1)+…+wn(xn)]. (3) 

The same expression holds true for irrational weights as well because, by Theorem 1, –1 is continuous. Eq. 
(3) defines a weighted quasi-arithmetic mean and relaxes the symmetry assumption.

Idempotence is an intuitively rooted convention for sustainability assessments. It can be derived from the
homogeneity requirement and the boundary condition S(1, …, 1) = 1. Indeed, under those two conditions S(x, 
…, x) = S(1x, …, 1x) = x S(1, …, 1) = x. Therefore, homogeneity is justified as well, albeit only for equal xi. Also, 

by Theorem 2, homogeneity gives rise to explicit generating functions, (x) = xp and power means. 
To relax the homogeneity requirement we introduce a shifted version of the weighted power mean, 

generated by (x) = (C + x)p for p0: 
S(x1, …, xn) = PMC, p = [w1(C+x1)p

 +…+ wn(C+xn)p]1/p – C (4) 

where the parameter C is nonnegative so that C + x  0 for all x [0, 1], and w1+…+wn = 1 with wi > 0. A single-
parameter family of aggregation functions is the shifted geometric mean 

1
1 1( , ,x ) GM ( ) ( ) nww

n C nS x C x C x C= = + + − (5) 

which is a special case of (4) for p→0. Despite their simple form, shifted geometric means have important 
properties, in addition to (P.1)–(P.4), which provide a continuum of choices between the weighted geometric 
and arithmetic means defined by 

GM = 1
1

nww
nx x and AM = w1x1 +…+ wnxn.

We discuss these properties in the next section. 

2.3. Further properties of means 

Let C  0, wi > 0, and w1+…+wn = 1. Then the following are true: 

(a) GMC is increasing in both, C and xi i
(b) GM0 = GM

(c) limC→GMC = AM.
To prove (a) we take the derivative of GMC, 

1 1

1 1 1

GM
( ) ( ) 1 ( ) 1k k

nn n
w wwC i

i i k k
i ik i ki

d w
w C x C x C x

dC C x
−

= = =

   
= + + − = + −    

+    
   ; 
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the property follows from the inequality of weighted arithmetic and geometric means (Hardy et al. 1934, 
Theorem 9), 

1 1

i

nn
w

i i i
i i

w y y
= =

 

with yi = 1/(C+xi). The monotonicity in xi can be verified by taking the partial derivative of GMC. (b) is obvious. 
Finally 
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(by L' Hôpital's rule) 
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i i
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=
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which is (c). 
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k 

i' j'

Figure 1. Hierarchical assessment by successive aggregations in stages j, j' and k. 

Next, consider a multi-stage assessment procedure which successively combines indicators into more 
composite variables. As shown in Figure 1, the indicators i, i', … on the left are aggregated into variable j, 
which is next combined with other variables j' of the same hierarchical level to form a yet more composite 
variable k, and so on. The input variables of each stage j or k are assigned relative weights and the output 
variables, xj and xk, are given by 

xj = S(xi, xi', …) with weights wij such that i wij = 1 

xk = S(xj, xj', …) with weights wjk such that j wjk = 1. 
Using the shifted geometric mean with the same C in both stages gives 

( ) ij

j

w

j ii V
x C x C


= + −

( ) jk

k

w

k jj V
x C x C


= + −

where Vj and Vk are the subsets of variables which are combined to generate variables j and k respectively. 

Substituting the first equation above into the second we get 

      ( )
jk

ij

k j

w
w

k ij V i V
x C C x C C

 

 = + + − −
   

( )
jk

ij

k j

w
w

ij V i V
C x C

 

 = + −
   

( ) ij jk

k j

w w

ij V i V
C x C

 
= + − 

The last expression is identical to the shifted geometric mean of a single aggregation stage k (without the 
intermediate variables j, j', …) whose inputs are the same as the primary inputs i, i', … of the multistage system 
of Figure 1 with weights wi ≜ wijwjk such that 

j i wijwjk = 1 = i wi  (6) 
Conversely, any shifted geometric mean can in many different ways be represented as a hierarchical 

(nested) composition of simpler GMC functions all with the same parameter C. We refer to this property as 

(d) All GMC functions with n > 2 inputs (and C  0) are hierarchically decomposable.
We close this section by stating a number of other elementary properties of shifted means.
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(e) GMC is concave in C and concave in (x1, …, xn). These properties are consequences of the inequality

d2GMC/dC2  0 and the negative definiteness of the Hessian, H = [2GMC/xixj], which in turn can be derived 

by applying the Cauchy inequality, (aibi)2  ai
2bi

2 with ai = wi
0.5 so that ai

2 = 1 and suitable bi. Concavity 
in (x1, …, xn) implies that GMC exhibits diminishing marginal returns to each i, that is, if all indicators but i are 
fixed, then any increase in xi leads to a smaller increase in the overall sustainability as xi approaches 1 (see 
Figure 2). 

Figure 2. Function (0.1 + x1)0.5(0.1 + x2)0.5 – 0.1 exhibiting diminishing marginal returns. 

(f) Shifted power means, (2), are also hierarchically decomposable and increasing in C and (x1, …, xn). It can
be shown that these functions are convex in C and in (x1, …, xn) for p > 1 and concave for p < 1, so that they 
can model either increasing or decreasing marginal returns. 

(e) Finally we consider the case where a subset I of indicators are critically important in the sense that S = 0

whenever xi = 0 for at least one i  I. The nine planetary boundaries identified by Rockström et al. (2009) could 
be viewed as such critical points of sustainability. These boundaries are defined by a number of indicator 
threshold values which, if exceeded for too long, will have harmful or even catastrophic consequences for the 
planet. For example, humanity might not be able to avert collapse if atmospheric CO2 concentrations become 
too high despite improvements of, say, GDP. To take into account both critical and noncritical indicators we 
propose the following extension to GMC: 

1

,GM ( ) 1ji
ww

B C i j
i I j I

x C Bx C B

 −

 

  
= + + − −  
   
  , (7) 

where i and j index critical and noncritical indicators, respectively, with relative weights satisfying 

1
i I

iw


=  and 1
j I

jw


= ,

and C, B, and  are model parameters satisfying C > 0 and , B  [0, 1]. These three parameters characterize 

sustainable operating spaces where xi > 0 i  I.  For example, suppose that all critical indicators are xi > 0 and 
all noncritical indicators are xj = 0. From (7) we get 

( ) ( )
1 1

,GM 1 1i iw w
B C i i

i I i I

x C C B x B

 

 − −

 

   
= + − − = −   
   
  . 

For B = 1, the expression given above is zero as well, which implies that the set of noncritical indicators is 
critical if considered as a whole. Yet choosing B < 1 renders this set noncritical as a whole since GMB,C > 0 even 

when xj = 0 for all j  I. 

3. NUMERICAL RESULTS

In this section we report on the application of the shifted geometric mean using the same indicator data and
weights as those of the most recent versions of several established models: HDI, EPI, a TOPSIS (Technique for 
Order of Preference by Similarity to Ideal Solution) model fitted to EPI data, and SAFE. These models use 
different aggregation approaches: 

• HDI is the geometric mean of three variables, one of which is the average of two specialized indicators.

• EPI is a hierarchical additive model that generates a weighted arithmetic mean.
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• TOPSIS is a multi-criteria decision-making model.

• SAFE is a hierarchical fuzzy inference system.
Against all the above we tested the model

1
1 1GM (1 ) (1 ) 1nww

nx x= + + − . 

From numerical experiments not reported here we have observed that this function gives similar assessments 
as the functions GMC and PMC,p with weights wi and parameters C and p chosen so as to maximize the overall 
sustainability correlation coefficient or minimize the mean absolute ranking deviations from the original 
models. 

Let q = 1, …, Q be entities whose sustainability is assessed and t = 1, 2 the estimation method (e.g., 1 for the 
shifted geometric mean and 2 for any other model). Sqt denotes the overall sustainability estimate of entity q 
by method t. We use Pearson's r correlation coefficient to measure the linear relationship between the values 

Sq1 and Sq2 for all q. We also use Kendall's  rank correlation coefficient to compare the rankings generated by 
the two methods from most to least sustainable countries. Both coefficients range from −1 (complete negative 
association) to +1 (complete positive association). The relevant formulas are 

1 1 2 2
1

2 2
1 1 2 2

1 1

( )( )

( ) ( )

Q

q q
q

Q Q

q q
q q

S S X S

r

S S S S

=

= =

− −

=

− −



 

, 
1

1 Q

t qt
q

S S
Q =

=  , t = 1, 2. 

Rank correlation is based on the numbers of entity pairs having concordant, antithetical, and tied rankings 
in the two models. Consider all distinct entity pairs, i.e., {q, p} such that q = 1, …, Q – 1 and p = q + 1, …, Q. 
There are N = Q(Q – 1)/2 such pairs; thus {q, p} = {1, 2}, …, {1, Q}, {2, 3), … {Q – 1, Q}. We define the following 
auxiliary quantities: 

Nc = number of concordant entity pairs {q, p}, i.e., (Sq1 – Sp1)(Sq2 – Sp2) > 0 
Nd = number of discordant entity pairs {q, p}, i.e., (Sq1 – Sp1)(Sq2 – Sp2) < 0 
Nt = number of ties {q, p} in model t, i.e., Sqt = Spt (regardless of the other model), where t=1, 2. 

The Kendall correlation is defined by 

1 2( )( )

c dN N

N N N N


−
=

− −

with maximum value 1 assumed when Nd = 0 (in which case we have that N = Nc + N1 and N2 = N1). 
HDI uses four indicators: 
LE = life expectancy at birth 
GNI = gross national income per capita in 2017 PPP $ 
ES = expected years of schooling if prevailing patterns of age-specific enrolment rates persist 
MS = current mean years of schooling of adults aged above 25 

Auxiliary indices are computed by interpolation between thresholds of values deemed unsustainable and 
sustainable 

y1 = (LE–20)/(85–20), y2 = [ln(GNI)–ln(100)]/[ln(75000)–ln(100)], y3 = ES/18, y4 = MS/15, 
which are then restricted on [0, 1] as follows: 

xi = min[1, max(0, yi)], i = 1, …, 4. 
The overall index is given by 

HDI = 
+ 

 
 

1/3

1/3 1/3 3 4
1 2

2

x x
x x . 

We apply GM1 with four inputs and weights w1 = w2 = 1/3 and w3 = w4 = 1/6. Table 1 shows the ten highest 
and ten lowest ranking countries according to HDI. 
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Table 1. Country rankings and indices according to HDI and GM1 (2019 data). 

Country HDI rank GM1 rank HDI index GM1 index 

Norway 1 1 0.9570 0.9567 
Switzerland 2 2 0.9555 0.9559 

Ireland 3 3 0.9553 0.9549 
Hong Kong, China (SAR) 4 4 0.9490 0.9493 

Iceland 5 5 0.9489 0.9485 
Germany 6 6 0.9469 0.9469 
Sweden 7 7 0.9452 0.9447 

Australia 8 8 0.9441 0.9437 
Netherlands 9 9 0.9439 0.9434 

Denmark 10 10 0.9399 0.9395 

Eritrea 180 177 0.4586 0.4837 
Mozambique 181 181 0.4559 0.4610 
Burkina Faso 182 182 0.4521 0.4595 
Sierra Leone 183 183 0.4517 0.4508 

Mali 184 184 0.4335 0.4456 
Burundi 185 186 0.4334 0.4427 

South Sudan 186 185 0.4326 0.4430 
Chad 187 188 0.3978 0.4044 

Central African Republic 188 189 0.3972 0.4013 
Niger 189 187 0.3937 0.4142 

The correlation coefficient of HDI and GM1 is r > 0.999 and the Kendall rank correlation is  > 0.99. The two 
indices give mostly identical rankings; this can be justified by the fact that they are both geometric means since 
HDI is GM0 in x1, x2 and (x3+x4)/2. 

EPI ranks 180 countries using 40 variables which assess the national efforts to protect environmental health, 
enhance ecosystem vitality, and mitigate climate change. These variables are transformed to points on the 0–
100 scale and all the missing data are imputed. Let A be the set of all variables available for a given country, 
with values zi on [0, 100] and weights wi. When applying the shifted geometric mean we normalize the original 
data by dividing by 100 and also disregard the missing variables (5.2% of the total data) by renormalizing wi. The 

resulting approximation is given by EPI  100 GM1 where 

1GM 1 1
100

iv

i

i A

z



 
= + − 

 
 ,   i

i

k
k A

w
v

w


=


. (8) 

The rankings of EPI with imputed data and 100GM1 with missing data are quite similar, as shown in Table 
2. Despite the fact that the EPI score is higher than 100GM1 for most countries, very strong positive correlations

are observed between sustainability indices (r > 0.99) and rankings ( = 0.93).

Table 2. Country rankings and indices according to EPI and GM1 (2019 data). 

Country EPI rank GM1 rank EPI index 100GM1 index 

Denmark 1 1 77.9 74.78 
United Kingdom 2 2 77.7 74.65 

Finland 3 3 76.5 74.24 
Malta 4 4 75.2 72.99 

Sweden 5 6 72.7 70.04 
Luxembourg 6 5 72.3 70.40 

Slovenia 7 7 67.3 64.67 
Austria 8 9 66.5 62.67 

Switzerland 9 8 65.9 64.65 
Iceland 10 10 62.8 60.25 

Sudan 171 163 27.6 25.72 
Turkey 172 171 26.3 24.13 
Haiti 173 169 26.1 24.52 

Liberia 174 174 24.9 23.07 
Papua New Guinea 175 175 24.8 22.91 

Pakistan 176 176 24.6 22.33 
Bangladesh 177 177 23.1 21.50 
Viet Nam 178 178 20.1 18.73 
Myanmar 179 179 19.4 18.06 

India 180 180 18.9 17.15 
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HDI and EPI are strongly correlated with GM1. To a great extent, this is due to two facts: (i) the main 

functional evaluations in HDI and EPI involve GMC, with C equal to 0 and , respectively; and (ii) when xi  
[0, 1] GMC appears to be robust to variations in C. To further explore the approximation capability of GM1 we 
examine models involving several computational steps rather than a single functional evaluation. 

TOPSIS (Hwang and Yoon, 1981) calculates the overall assessment for a given country using distances of 
the country indicators from the so-called negative and positive ideal points, comprising the worst and the best 
indicator values, respectively, over all countries. We apply TOPSIS and a variant thereof of the EPI data and 
compare the results with GM1. 

The environmental performance estimates obtained by the standard TOPSIS method have a strong 

correlation with the original EPI indices with coefficients r = 0.87 and  = 0.67 and a slightly stronger correlation 

with GM1 with r = 0.88 and  = 0.69. 
SAFE uses 69 inputs, each mapped into one or more fuzzy sets, and employs fuzzy inference engines and 

rule bases to aggregate inputs into composite indicators and, finally, the overall sustainability index. HDI and 

SAFE have a strong correlation (r = 0.80 and  = 0.62) and common indicators LE, GNI and ES, but SAFE uses 
many more inputs to allow for a global assessment and more sophisticated methods to impute missing data 
and assign weights to indicators and intermediate components of sustainability. 

We applied GM1 to the SAFE data with and without imputation. To compute overall indicator weights, we 
repeatedly used (6) and the relative weights shown in Figure 1 of Grigoroudis et al. (2021). The results are 
shown in Table 3. 

Despite their different features the two models have very strongly correlated index values and rankings (r 

= 0.98,  = 0.90). We also tested GM1 with missing data (about 7% of total) and obtained similar results. The 
rather significant deviations in the rankings of the two models for the Netherlands and the Democratic 
Republic of Congo is attributed to model differences and the number of fuzzy sets used in SAFE. For 9 fuzzy 
sets SAFE ranks the Netherlands 8th among countries. However, a finer reasoning scheme with 21 sets placed 
the same country 17th. A numerical investigation showed that the rankings of most countries end up quite 
close to those of GM1 when a larger number of fuzzy sets are used in SAFE. One could thus fine-tune SAFE by 
just enhancing the number of its fuzzy sets. 

Table 3. Country rankings and indices according to SAFE and GM1 (2016 data; imputed). 

Country SAFE rank GM1 rank SAFE index GM1 index 

Denmark 1 3 0.8691 0.8574 
Sweden 2 2 0.8618 0.8592 
Norway 3 1 0.8578 0.8643 

Switzerland 4 5 0.8387 0.8375 
Austria 5 4 0.8284 0.8487 
Finland 6 6 0.8189 0.8312 
Slovenia 7 7 0.8067 0.8248 

Netherlands 8 22 0.8044 0.7746 
Slovakia 9 13 0.8043 0.8066 

United Kingdom 10 10 0.8041 0.8161 

Dem. Rep. of the Congo 155 148 0.4039 0.5118 
Iraq 156 158 0.3957 0.4740 

Guinea-Bissau 157 155 0.3934 0.4858 
Yemen 158 162 0.3862 0.4620 

Central African Rep. 159 157 0.3830 0.4763 
Eritrea 160 163 0.3747 0.4522 
Sudan 161 161 0.3664 0.4622 

Mauritania 162 160 0.3643 0.4637 
Haiti 163 164 0.3640 0.4355 

Afghanistan 164 159 0.3621 0.4683 

4. LIMITATIONS

The benchmark assessments of the previous section indicate that the shifted geometric function gives 
remarkably similar estimates as those of other common sustainability assessments. This function is based on 
a set of intuitively appealing postulates and unifies existing additive and multiplicative sustainability 
approaches.  
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A shortcoming of the shifted geometric function is that it can only assign constant weights wi, independent 
of the indicator values xi. Value-dependent weights are necessary to model more elaborate sustainability 
concepts. For example, a group of important indicators may exhibit a compensatory behavior, that is, a "bad" 
value of one indicator is compensated by the "good" value of another, thus cancelling individual effects on 
sustainability. SAFE on the other hand avoids such an effect by its involved reasoning layout. In a sense the 
two models are complementary. The simplicity of the shifted geometric model comes with the already 
mentioned compensatory price and SAFE with its computationally involved structure.  

5. CONCLUSIONS

Sustainability assessment models, by their nature are subjective. In this paper we departed from traditional
ad hoc approaches by proposing a mathematical model based on a number of natural postulates, adopting a 
bottom up approach. The resulting model is novel, has interesting properties, and correlates very well with 
other established approaches. Our intention is to provide a solid mathematical basis for the measurement of 
sustainability and derive insights which are not available in existing models. 

Besides the model's interesting properties, a major advantage is its simplicity. It would be important to 
derive conditions for a uniqueness result but presently this seems to be elusive. More work is needed to apply 
our approach to systems other than nations, such as energy, transportation, urban systems, etc. Also, 
sensitivity analyses are needed to provide guidance regarding the most important indicators that would 
improve sustainability as fast as possible. 

One could contend that the postulates we used are subjective and the resulting model is also subjective. 
However, every mathematical theory is founded on axioms or postulates and its information content is 
basically that of its axioms. We hope our approach will start new discussions about sustainability assessment 
and provide a more rigorous framework for this important problem. 
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